93 research outputs found

    Robust Photogeometric Localization over Time for Map-Centric Loop Closure

    Full text link
    Map-centric SLAM is emerging as an alternative of conventional graph-based SLAM for its accuracy and efficiency in long-term mapping problems. However, in map-centric SLAM, the process of loop closure differs from that of conventional SLAM and the result of incorrect loop closure is more destructive and is not reversible. In this paper, we present a tightly coupled photogeometric metric localization for the loop closure problem in map-centric SLAM. In particular, our method combines complementary constraints from LiDAR and camera sensors, and validates loop closure candidates with sequential observations. The proposed method provides a visual evidence-based outlier rejection where failures caused by either place recognition or localization outliers can be effectively removed. We demonstrate the proposed method is not only more accurate than the conventional global ICP methods but is also robust to incorrect initial pose guesses.Comment: To Appear in IEEE ROBOTICS AND AUTOMATION LETTERS, ACCEPTED JANUARY 201

    DMP_MI: an effective diabetes mellitus classification algorithm on imbalanced data with missing values

    Get PDF
    © 2019 Institute of Electrical and Electronics Engineers Inc.. All rights reserved. As a widely known chronic disease, diabetes mellitus is called a silent killer. It makes the body produce less insulin and causes increased blood sugar, which leads to many complications and affects the normal functioning of various organs, such as eyes, kidneys, and nerves. Although diabetes has attracted high attention in research, due to the existence of missing values and class imbalance in the data, the overall performance of diabetes classification using machine learning is relatively low. In this paper, we propose an effective Prediction algorithm for Diabetes Mellitus classification on Imbalanced data with Missing values (DMP_MI). First, the missing values are compensated by the Naïve Bayes (NB) method for data normalization. Then, an adaptive synthetic sampling method (ADASYN) is adopted to reduce the influence of class imbalance on the prediction performance. Finally, a random forest (RF) classifier is used to generate predictions and evaluated using comprehensive set of evaluation indicators. Experiments performed on Pima Indians diabetes dataset from the University of California at Irvine, Irvine (UCI) Repository, have demonstrated the effectiveness and superiority of our proposed DMP_MI
    • …
    corecore